Similarity of electroosmotic flows in nanochannels
نویسندگان
چکیده
منابع مشابه
Electroosmotic Flow in Nanofluidic Channels
We report the measurement of electroosmotic mobilities in nanofluidic channels with rectangular cross sections and compare our results with theory. Nanofluidic channels were milled directly into borosilicate glass between two closely spaced microchannels with a focused ion beam instrument, and the nanochannels had half-depths (h) of 27, 54, and 108 nm and the same half-width of 265 nm. We measu...
متن کاملHigh-ionic-strength electroosmotic flows in uncharged hydrophobic nanochannels.
We report molecular dynamics simulation results of high-ionic-strength electroosmotic flows inside uncharged nanochannels. The possibility of this unusual electrokinetic phenomenon has been discussed by Dukhin et al. [A. Dukhin, S. Dukhin, P. Goetz, Langmuir 21 (2005) 9990]. Our computed velocity profiles clearly indicate the presence of a net flow with a maximum velocity around 2 m/s. We found...
متن کاملElectroosmotic Flow in Mixed Polymer Brush-Grafted Nanochannels
Mixed polymer brush-grafted nanochannels—where two distinct species of polymers are alternately grafted on the inner surface of nanochannels—are an interesting class of nanostructured hybrid materials. By using a coarse-grained molecular dynamics simulation method, we are able to simulate the electrokinetic transport dynamics of the fluid in such nanochannels as well as the conformational behav...
متن کاملFabrication and electroosmotic flow measurements in micro- and nanofluidic channels
An easy method for fabricating microand nanofluidic channels, entirely made of a thermally grown silicon dioxide is presented. The nanochannels are up to 1-mm long and have widths and heights down to 200 nm, whereas the microfluidic channels are 20-lm wide and 4.8-lm high. The nanochannels are created at the interface of two silicon wafers. Their fabrication is based on the expansion of growing...
متن کاملSurface charge, electroosmotic flow and DNA extension in chemically modified thermoplastic nanoslits and nanochannels.
Thermoplastics have become attractive alternatives to glass/quartz for microfluidics, but the realization of thermoplastic nanofluidic devices has been slow in spite of the rather simple fabrication techniques that can be used to produce these devices. This slow transition has in part been attributed to insufficient understanding of surface charge effects on the transport properties of single m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010